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Topological flow structures and stir mixing for steady flow
in a peripheral bypass graft with uncertainty
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SUMMARY

With growing focus on patient-specific studies, little attempt has yet been made to quantify the modelling
uncertainty. Here uncertainty in both geometry definition obtained from in vivo magnetic resonance imaging
scans and mathematical models for blood are considered for a peripheral bypass graft. The approximate
error bounds in computed measures are quantified from the flow field in steady state simulations with
rigid walls assumption.

A brief outline of the medical image filtering and segmentation procedures is given, as well as virtual
model reconstruction and surface smoothing. Diversities in these methods lead to variants of the virtual
model definition, where the mean differences are within a pixel size. The blood is described here by either
a Newtonian or a non-Newtonian Carreau constitutive model.

The impact of the uncertainty is considered with respect to clinically relevant data such as wall shear
stress. This parameter is locally very sensitive to the surface definition; however, variability in the topology
has an effect on the core flow field and measures to study the flow structures are detailed and comparison
performed. Integrated effect of the Lagrangian dynamics of the flow is presented in the form of stir
mixing, which also has a strong clinical relevance. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is an increasing desire for highly resolved numerical simulations of in vivo data aimed at
patient-specific studies on a clinical basis, as well as targeted studies in idealized geometries that
can yield insight into complex physiological processes. A key aspect in performing these works
is the ability to understand and accurately reproduce the observations, in both the mathematical
models that govern the processes as well as the setup of the problem. There is however an inherent
uncertainty, or error, when obtaining data in vivo.

In this work, we formulate a possible uncertainty range in the context of clinically relevant
flow measures, highlighting general differences in the flow field and geometry definition. These
are related to the methods used in the problem set-up and rheological models in the numerical
simulations. Specifically, we consider an example of a steady state flow for a patient-specific
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distal peripheral end-to-side anastomosis configuration, where the health-care concern is commonly
re-stenosis and atherosclerosis. Measures to study the flow field focus on both wall and core flow,
analysing the wall shear stress (WSS) as well as secondary flows and stir mixing.

Uncertainty in the problem set-up stems from the virtual model preparation from the medical
images [1]. In this work, the same data set is used and two automatic methods for image segmenta-
tion are chosen from the existing image segmentation community [2], which are based on clustering.
The initial surface definitions are obtained using a partition-of-unity implicit function approach to
interpolate the stack of segmented cross-sections, yielding finally a piecewise linear triangulated
mesh [3]. Different intensities of smoothing are applied to the surface definitions in order to remove
noise and effects due to the pixelated nature of the medical images, as well as to observe the level
and size of detail that influences the resulting flow field.

The models to describe the blood flow are undoubtedly of great importance in achieving accurate
numerical simulations, such that the choice of appropriate model and its parameters introduces
further variability and uncertainty. Throughout most of the arterial system of healthy individuals,
the red blood cells (RBCs) are dispersed and it is considered to be sufficient to model blood as an
inelastic, constant viscosity fluid (Newtonian) [4]. However, in some disease states, the vascular
geometry is altered in such a manner as to sustain relatively stable regions of slow recirculation
(e.g. aneurysms or downstream of a stenosis). In such flows, more complex constitutive models
should be used [4, 5], such as, for instance, shear-thinning and viscoelastic models [6]. In these
cases, Newtonian models may underestimate the WSS in slow flow regions as opposed to non-
Newtonian models, with a clear significance to health care. Furthermore, the selection of the
non-Newtonian model or the value of the fixed viscosity in the case of a Newtonian model will
result in a change in the flow field that should be quantified with respect to uncertainty in the
virtual model definition.

It is known that the haemodynamics in arteries is linked to disease formation such as atheroma
and aneurysms, which are nowadays commonly studied. While the relationship between the flow
field and disease are not fully understood, fluid mechanics parameters on and near the artery wall,
such as WSS and derived measures, are among the most commonly sought correlators to disease
[7, 8]. The non-planarity and tortuosity of vessels play a determining role in the arterial system
[9], resulting in a strong influence of the local and upstream vessel topology on the flow field.
In specific, for the case of distal end-to-side anastomoses, the core flow shows strong influence of
non-planarity to secondary structures [10–12], principally vortical structures and separated flow
regions. Secondary flow structure have also been studied in idealized circular non-planar geometries
[13, 14] within a medical context. The association of the vessel topology on the flow still remains
to be studied, especially with respect to small-scale geometric features (such as small surface
irregularities), which can locally affect the derived flow parameters on or near the wall, as well as
the local geometric features (such as stenoses and larger coherent surface features), which greater
affects the core flow field.

In performing patient-specific numerical studies based on in vivo measurements, there are a
range of possible errors as detailed in [1]. Despite the importance in quantifying error bounds,
there has been relatively little work as regards to this, principally due to the difficulty in measuring
the initial error bounds and how they propagate. Uncertainty in the geometry definition has been
discussed in [1, 15–18], all of which indicate a strong influence of the uncertainty or variation in
the surface definition on the resulting flow field. The question of reproducibility in these woks is
studied in terms of data comparison from multiple scans or varying medical image segmentation
schemes and intensities of surface smoothing.

The effect of different rheological models has been discussed in [18–22], showing marked
differences between them. Comparison between rheological models and changes in geometry are
presented in [18], where flow parameters on the wall are studied and the geometry uncertainty
is given by multiple scans at weekly intervals of the same patient case, concluding that the
geometry precision plays a dominating role as compared with non-Newtonian modelling. It should
be noted, however, that the geometries studied in [18] are the carotid bifurcation, where regions of
recirculation were not present, and the range of shear rates is not large to bring about large changes

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:926–953
DOI: 10.1002/cnm



928 A. M. GAMBARUTO, A. MOURA AND A. SEQUEIRA

in apparent viscosity, such that there are no dominating non-Newtonian effects. Furthermore,
Lee and Steinman [18] observe reproducibility by performing repetitions of scans at weekly
intervals, whereas no sensitivity to the segmentation and virtual model reconstruction is directly
discussed.

A mean of validating the computed flow field is by the use of phase contrast MR by providing a
detailed velocity map. Nevertheless, this imaging modality is still prone to inaccuracies; however,
it has been used to validate numerical simulations [23].

In this work, a peripheral bypass graft is used to gauge the uncertainty given by both the virtual
model definition as well as the choice of the viscosity function constitutive model for blood.
The outline of the paper is as follows. Section 2 is dedicated to the virtual model preparation
from medical images. In Section 3 the differences resulting in the virtual models are quantified
based on the closest distance between the models, volume, surface area and the mean surface
curvature. Section 4 discusses the fluid models used, the flow boundary conditions and details the
mesh independence results. Section 5 introduces measures based on the velocity gradient tensor to
identify topological features in the flow, whereas Section 6 presents an entropic measure of mixing
with a novel improved resolution. Section 7 discusses the uncertainty by comparing the computed
flow field with respect to the different geometries, investigating both flow measures on the no-slip
boundary as well as in the free-slip domain. Finally, the conclusions are given in Section 8.

2. VIRTUAL MODEL PREPARATION

A large portion of patient-specific studies that have investigated the effect of uncertainty in numer-
ical simulations have concentrated on the use of different mathematical models and boundary
conditions. However, there are few studies detailing effects of topological uncertainty stemming
from in vivo data acquisition and its processing to obtain a 3D virtual model.

In this section, the outline of procedures used in reconstructing the lumen boundary are
detailed, namely: medical image segmentation, 3D surface interpolation, and virtual model surface
smoothing.

The choice of this data set for a patient-specific study is based on its use in previous works,
investigating the effects of uncertainty on resulting WSS and correspondingly the clinical evalua-
tion. The uncertainty was described by segmentation, surface smoothing and geometry idealization
based on fitting elliptical cross sections to the segmented contours [1]. Furthermore, the data set is
part of a study characterization of peripheral bypass anastomosis geometry [24]. The histology of
the patient involves re-occlusion by the 13th month post-operatively and the insertion of a jump
graft which later also failed, as detailed in [25].

2.1. Patient-specific data set

The image data set is obtained using magnetic resonance imaging (MRI) and comprises 35 images
in the axial plane with spatial resolution 256×256, interpolated to 512×512 pixels by K-space
zero filling resulting in a pixel size of 0.254×0.254 mm size, and 1.5 mm slice thickness and
spacing. The images were obtained from 2D TOF using a 1.5 Tesla machine. Spatial pre-saturation
is used to suppress arterial flow, which can be noticed especially as a loss of signal in the proximal
vessel.

The Contrast-to-Noise Ratio (CNR) is a measure to quantify the goodness of the image quality,
defined here as CNR= (SROI −SST)/�NOISE, where SROI and SST are the mean signal intensities
(or mean square amplitudes) of the region of interest (ROI) and the surrounding tissue (ST),
respectively, and �NOISE is the standard deviation of the signal intensities of the surrounding ROI
background. For the case studied CNR≈2 [1] on average for the image stack, which can be
considered to be relatively good. Locally however, the value may differ and the regions of largest
variations in the segmentation are identified to be at the regions of bypass and proximal stenoses,
as well as parts of the anastomosis. These regions are locations of complex flow pattern or faster
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flow, which are known to affect the acquisition and hence yield greater uncertainty in the definition
of the lumen boundary.

2.2. Medical image segmentation

Medical images obtained in vivo are susceptible to uncertainty in defining features that arise through
both the imaging modality, as well as random noise. Unfortunately, there is no means of obtaining
a ‘ground truth’ reconstructed virtual model from in vivo measurements, and uncertainty naturally
arises. With the MRI modality used, the blood appears white while the background is black.
A image with no uncertainty would be a binary image. Partial volume effects, patient movement,
complex flow patterns and random noise are some of the main causes of unclear identification of
features in medical images and a grey-scale is obtained instead of a binary image. The aim of
accurate image segmentation is to identify two distinct classes: foreground and background, that
are equivalent to a binary image.

The images are initially cropped to identify only the desired vessel using the maximum intensity
projection. In doing this, the pertinent information is preserved and other regions containing
undesired features and noise are removed. Thus, the desired feature is enhanced principally by
removing undesired information in the image. Cropping the data set is also of importance to reduce
the computational cost. Based on the cropped region, the pixel intensities are then normalized to
range between 0 and 255, mainly to standardize in order to allow for comparison with different
patient data sets.

Image filtering, as a means of de-noising, is then performed, using the popular Perona–Malik
anisotropic diffusion method [26, 27]. The Perona–Malik filter is widely used despite being ill-
conditioned [27]; in practice the only noticeable effect of this drawback is staircasing at slowly
varying edges. Other filters as well as image contrast enhancement methods exist in the literature,
however, the Perona–Malik filter is chosen due to its current widespread use, and the fact that it
yields good results for our purposes, as shown in Figure 2.

Finally, a threshold value T of the pixel intensity is sought to delineate the foreground (desired
object) from the background. In this way, the background is given by 0�t�T and the foreground
by T �t�255, where t is the individual pixel intensity. The thresholding techniques chosen are
clustering methods, which use the grey-level histogram of the image, and thus transforming the
2D image into a 1D signal, losing any spatial information of the image which may be a weakness
in the methods. The two methods studied here are the Otsu [28] and the Kittler [29] methods,
chosen due to their popularity and accuracy [2]. Segmentation is performed individually to slices,
allowing the threshold value to vary within the stack but making it constant for each individual
image. The segmentation methods used in this study are now described briefly.

Otsu: The Otsu method [28] is among the most commonly used clustering methods due to its
simplicity and robustness. The method is based on maximizing the between-class variance, or
equivalently minimizing the within-class variance, and works well when the number of pixels in
each class is similar. The algorithm consists in calculating the variance for a range of threshold
values from lowest to highest, and then indicating the best threshold as that where the within-class
variance is minimum.

Kittler: The Kittler method [29] is an iterative method that relies on fitting a Gaussian to the back-
ground and one to the foreground pixels in the histogram. The new threshold is obtained by solving
a quadratic equation, and the value corresponds to the crossing location of the two Gaussians.
The assumption is that the object and background pixel intensities are normally distributed.
The Kittler method ranked top in the survey of Sezgin and Sankur [2].

Results of the grey-level thresholds for the image stack for the different methods are shown
in Figure 1. Clustering methods are probabilistic and do not retain the image spatial informa-
tion, however, they are generally robust, automatic, and very inexpensive computationally. User
intervention in performing segmentation procedures may help in avoiding deficits in automatic
methods, however it introduces variability and non-repeatability (Figure 2).

Other popular methods rely on the image intensity gradient or higher derivatives such as the
Hessian and Laplacian, and their eigenvalues. Nevertheless, these can be more susceptible to
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Figure 1. (a) Threshold variation along the image stack, where slice 0 corresponds to the distal extremity
and between slice 16 and 17 lies the bifurcation to the bypass and proximal conduits. Location of slice 16
and nomenclature are shown in (b), as well as the flow direction. Variation of image intensity (c) and

intensity gradient (d) are along the blue line shown in Figure 2 (going from bottom right to top left).

Figure 2. Contours of lumen boundary for Slice 16 (location shown in Figure 1(b)) superimposed over
image intensity (a, b) and intensity gradient (c, d) for both the unfiltered (a, c) and filtered (b, d) image
using the Perona–Malik filter. Segmentation is performed using the Otsu (red—inner contour) and Kittler

(yellow—outer contour) methods.

noise due to the higher-order derivatives, as well as partial volume effects and flow imaging
artefacts in MRI. Means to overcome these drawbacks include smoothing as in deformable
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Figure 3. Reconstructed virtual models and detail of anastomosis obtained from the Kittler and Otsu
segmentation methods, with detail shown for different levels of smoothing: un-smoothed (G K , G O ),

slightly smoothed (G300
K , G300

O ) and intensely smoothed (G20000
K , G20000

O ).

models, or the need for user assistance for intervention and correction. These methods have been
seen to perform worse than clustering methods in certain cases [2]. Importantly, it is clear that
there is no convergence to a common solution between methods, and the notion of uncertainty
persists.

Observing the two virtual model definitions obtained before any adaptation is made, as shown
in Figure 3, the Kittler method is capable of distinguishing the vessel from the background even
where the contrast is poor, as noticeable by the greater length of proximal vessel being captured.
However, the method appears to identify the conduits erroneously in other instances, as seen at the
terminal portion of the distal conduit, where a bifurcation is clearly present and more accurately
captured with the Otsu method.

In brief, we have chosen some popular, automatic and computationally inexpensive methods to
obtain a range of possible segmentations and virtual models. These can be used to study the range
of uncertainty in model boundary definition, and correspondingly the flow field and parameters
postulated to be associated with disease. We note that while these methods proved well adapted
to the patient case selected, other cases may be better adapted to different thresholding schemes.

2.3. Virtual model surface reconstruction

Uncertainty in the segmentation is further augmented by the virtual model reconstruction that
involves interpolation. Owing to the medical image resolution, a direct extraction of the desired
definition is not possible and an interpolation approach is required to allow for finer sampling.
Large anisotropy of pixel to slice spacing may lead to greater uncertainty in the virtual model
definition. The virtual model surfaces are obtained from the segmented contours using an implicit
function formulation, also known as Kriging, with cubic radial basis function interpolation, as
described in [1, 12].
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The surface interpolating the segmented contour stack is defined as the zero-level iso-surface
of an implicit function f (x). Setting f (x)=0 on sampled points of the cross-section stack defines
the on-surface constraints. A gradient is formed in the implicit function by introducing further
constraints at a constant close distance normal to the curve, known as off-surface constraints,
with f (x)<−� inside the curves and with f (x)>� outside the curves, where � is a constant.
The resulting problem is the solution of the unknown coefficients c from a linear system given by
f (xi )=

∑n
j=1 c j�(xi −x j ), for i =1, . . . ,n, where � is the radial basis function. To minimize the

curvature variation, the cubic radial basis function is used �(xi −x j )=|xi −x j |3, where xi are the
position vectors the function is evaluated at, and x j are the position vectors of the interpolation
constraints.

The zero-level iso-surface of the implicit function, which defines the virtual model surfaces, is
extracted using the marching tetrahedra approach [30] with linear interpolation to give an initial
triangulation, which is then projected onto the true iso-surface to eliminate the discretization errors
in the linear interpolation.

To reduce the computational time in the implicit function formulation as well as the marching
tetrahedra method, a partition-of-unity approach [31, 32] is applied. Thus, the global domain
of interest is divided into smaller overlapping subdomains where the problem can be solved
locally. The local solutions are combined together by using weighting functions that act as smooth
blending functions to obtain the global solution. The domain is divided into rectangular subdomain
partitions, using C1 base spline functions V (di )=2d3

i −3d2
i +1 as the weighting functions over

each subdomain, where

di =1− ∏
r∈x,y,z

4(pr −Sr )(Tr − pr )

(Tr −Sr )2
,

and Sr and Tr are opposite rectangle subdomain corners, such that 0�di�1 with di =1 on the
edges and di =0 in the centre. Hence, V (0)=1,V (1)=0,V ′(0)=0,V ′(1)=0.

2.4. Surface smoothing

Owing to the pixelated nature and the presence of uncertainty and noise in the medical images,
the resulting virtual model surfaces are unrealistically rough and surface smoothing is necessary.
Care is taken in the smoothing procedure to ensure fidelity with the medical images. The method
adopted is a variation to that described in [1].

The algorithm has two stages. The first stage of the smoothing is an explicit scheme where
the severity of smoothing increases with the number of iterations performed. This employs the
bi-Laplacian method [33] that involves moving the mesh nodes using the local mesh connectivity
information in order to minimize the surface roughness, and hence curvature variation. In the
second stage of the smoothing method, the surface area and volume alterations brought about are
reduced by an iterative uniform inflation of the surface along the local normal [1, 3].

The first stage is detailed as follows. Consider a regular triangular mesh consisting of n vertices
vi = (xi , yi , zi ), i =1, . . . ,n. The vertices neighbouring each vertex vi in the triangulation are
denoted by v j , j =1, . . . ,mi , where mi is the number of neighbours. The discrete Laplacian at the
vertex vi is calculated as

Li =
mi∑
j=1

wi j (v j −vi ), (1)

where the weights wi j have the constraint that
∑mi

j=1 wi j =1. Here wi j =1/mi is used, and hence
the Laplacian can be interpreted as the vector moving the node in question to the barycentre of
the neighbour vertices, which is stable and regularizes the mesh.

The iterative smoothing is performed in two sub-steps as

vk+1/2
i = vk

i +�Lk
i ,

vk+1
i = vk+1/2

i +�Lk+1/2
i ,

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:926–953
DOI: 10.1002/cnm



TOPOLOGICAL FLOW STRUCTURES AND STIR MIXING 933

where k denotes the iteration number and the Laplacian is recalculated at each sub-step. The mesh
nodes are moved simultaneously at the end of each sub-step. Here we take �=−�, corresponding
to the bi-Laplacian smoothing, which is analogous to the minimization of the thin plate energy of
the surface [33]. The method can be thought as two Laplacian smoothing steps, the first step as
an explicit iterative solution to the diffusion equation where the curvature is the property diffused,
whereas the second step is used to inflate the surface and yield a bi-Laplacian overall method.
For this work all the bi-Laplacian smoothing iterations are performed using �=0.6.

If the curvature on a surface can be thought of as a signal, then the reduction of the high curvature
is analogous to convolution of the curvature signal with a low-pass filter [34]. Therefore, the
bi-Laplacian method acts as an overall low-pass filter with no compensation (or gain), with the result
that the geometry tends to shrink. A variation of the bi-Laplacian method is given by Taubin [35]
with �<−� to compensate for shrinkage during smoothing, which is equivalent to amplifying the
low-frequency signal (hence the low curvature) while filtering the higher frequencies; however,
this leads to topological distortions and does not guarantee minimum shrinkage. The criterion
adopted to minimize both the surface area and volume changes in the iterative smoothing stage
is to introduce a second stage that involves an iterative uniform inflation of the surface along the
local normal until the distance between the smoothed and the original surface representations is
minimized [1].

The reconstructed geometries obtained using the Otsu and Kittler segmentations are smoothed
using 50 bi-Laplacian iterations in order to reduce faceted features for quality mesh preparation.
This can be considered as not altering the surface definition since the deformation to the surface
was found to be a maximum of 0.1 pixels, on average less than 3% pixel and over 90% of the
surface changes by less than 4% pixel. Further iterations in the surface smoothing lead to simplified
geometries, where the small-scale features present in regions of high curvature are progressively
removed.

In order to understand the significance of small-scale geometrical features on the flow, in this
work the geometries are further subjected to 300 and 20 000 iterations (on top of the 50 iterations
mentioned above) of the bi-Laplacian smoothing. The small-scale uncertainties may be due to noise
or imaging artefacts such as the partial volume effects and flow-related artefacts. Nevertheless,
it is plausible that these small-scale features are anatomically correct and the surface smoothing
can then be considered as an idealization process by removing detail. It is important to note that
large-scale geometric features are preserved, such as conduit bifurcation angles (analysed using the
discrete method discussed in [1] and references therein), while surface area and volume changes
are minimized as mentioned above.

Once the mathematical models to describe the fluid have been chosen, the flow field is described
by the flow boundary conditions and the geometry definition. By reducing the level of detail by
smoothing the surface, the fluid properties at or near the wall, such as WSS and spatial gradients
of WSS, will inevitably change [1]. Yet, it is not clear to what extent and how far reaching into
the flow core the impact of these small-scale changes in the geometry definition will be.

In this manner, uncertainty in boundary definition is studied with respect to two automatic
segmentation methods and the level of small scale detail. To summarize, the geometries studied
are obtained by the Otsu and Kittler thresholding methods and subjected to moderate and intensive
smoothing. The resulting geometries are denoted by G O , G300

O , G20000
O , G K , G300

K , G20000
K , where

the subscript denotes the segmentation method and the superscript denotes the level of smoothing.
The results presented are for the Newtonian fluid model case unless otherwise stated or marked
as an additional subscript ‘Carreau’, for example G300

O-Carreau.

3. TOPOLOGICAL DIFFERENCES IN SURFACE MODEL DEFINITIONS

In order to observe topological changes in the model definitions that are local or small-scale,
the description of surface non-uniformity may be given by the curvature. The closed geometry
that possesses the least amount of detail is a sphere, since it has a constant radius of curvature.
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Table I. Absolute closest distance between surface definitions as mean values, standard
deviation and maximum values (mm).

Model comparison Average Standard deviation Peak

G K →G O 0.25 0.14 1.0

G K →G300
K 8 ×10−3 9 ×10−3 0.12

G K →G20000
K 48 ×10−3 50 ×10−3 0.47

G O →G300
O 7 ×10−3 8 ×10−3 0.10

G O →G20000
O 45 ×10−3 49 ×10−3 0.41

Note that 0.254mm=1 pixel.

Any change in the surface definition would induce a change in the tangent variation and hence a
non-uniform curvature. In the smoothing described above, the curvature variation is reduced, and
in so doing the level of small-scale features are attenuated.

The mean curvature at each node is calculated using the method proposed in [34] directly on a
piecewise linear triangular mesh. It is given by

�i = 1

4Ai

mi∑
j=1

‖(cot(� j )+cot(� j ))(v j −vi )‖, i =1, . . . ,n, (2)

where Ai is the area of the triangles surrounding the node vi , and � j and � j are the angles opposite
to side i j in the triangles sharing this side.

The original and smoothed geometries can be seen in Figure 5 coloured by the curvature.
The average surface curvature for G K and G O over the anastomosis region is approximately
equivalent; however, there is a reduction of approximately 15 and 35% between these and their
smoothed variants using 300 and 20 000 smoothing iterations, respectively.

Another means to quantify the difference between the models is the closest distance between
surface definitions, that is a measure of the local change. Details are presented in Table I. It is
clear that the absolute closest distance between the geometries lies within the pixel (0.254 mm)
value on average, and hence within the uncertainty bounds of medical image resolution. On the
other hand, locally the displacement can be of the order of a few pixels, nonetheless, from the
standard deviation, this is seen to involve small regions.

A cross section through the smoothed geometries is presented in Figure 4. It is apparent that
there is a great discrepancy between G K and G O due to the different consideration of uncertainty
inherent of medical images. The G20000

K and G20000
O intensely smoothed geometries clearly do

not follow the original segmentations of the lumen and there is arguably a lack of fidelity to the
raw data. The G300

K and G300
O geometries, however, clearly respect the original segmentations and

behave as smoother interpolations to the medical image data. Having said this, it is still unknown
which best fits the true anatomic surface definition from the reconstructed virtual models.

Measures used in classifying large-scale topological features of peripheral bypass grafts are
predominantly the bifurcation angles of the conduits [24], giving an indication of planarity. In this
work, these angles do not perceivably change, as calculated by the discrete methods discussed in
[1, 24], and other large-scale comparative measures are sought. These can simply be the surface
area and volume of the geometry. It is found that the Kittler segmentations have an increased
surface area of ∼15% and volume of ∼30% with respect to the Otsu segmentations, for the
anastomosis region only. Calculating the ratio of volume to surface area, as a similar concept to
the hydraulic diameter, it is found to be ∼0.9 for the Otsu and ∼1.0 for the Kittler segmentations.
From these measures one can estimate a greater traction force per unit volume in the Otsu cases,
hence a greater pressure loss. The geometric variation is thus confined to the small-scale features,
while the global features of the geometry are largely invariant with respect to bifurcation angles,
but discernible as regards to volume and surface areas.

It can be seen from the threshold plots in Figure 1 that the methods perform substantially
differently when the images are filtered, with the Kittler method having a lower threshold than
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Figure 4. Contours of lumen boundary for Slice 16 for the smoothed geometry definitions: red (starting
definition) for G O and G K , yellow (moderately smoothed) for G300

O and G300
K , and light blue (intensely

smoothed) for G20000
O and G20000

K . Top row shows cross sections obtained from the Otsu segmentation
and bottom row for the Kittler segmentation. Contours are superimposed over image intensity (a, c) and

intensity gradient (b, d) for the filtered image using the Perona–Malik filter.

the Otsu method, resulting in a geometry definition with increased patency. The locations of the
biggest difference are seen from Figure 6, for both segmentation and smoothing variants of the
geometries. The difference in the segmentation methods is apparently less obvious for the graft,
upstream to the stenosis. Overall the closest distance map appears uniform, with a typical variation
in surface definition under the pixel size, and the greatest differences localized in regions at the
graft and proximal vessel junction to the anastomosis (which are stenosis locations), as well as the
anastomosis ‘toe’ (which is a region of recirculating flow). It is clear that the smoothing performed
with 300 bi-Laplacian iterations has had the effect of reducing noise carried through from both
the pixelated nature of the medical images, and the location of the constraints in the implicit
function formulation. In this case, the isolated regions of higher curvature have been removed and
the deformation to the surface is largely in small isolated spots of varying sign.

4. MATHEMATICAL MODELS FOR CFD

The mathematical model describing blood flow in 3D regions of the cardiovascular system consists
of the equations for the isothermal flow of incompressible fluids. In this study we consider the
rigid wall and steady state flow assumptions as acceptable conditions to obtain preliminary results.
While unsteady simulations and moving boundaries are more physiologically realistic, further
variability is introduced when considering the waveform and the constitutive models for the vessel
walls. Studies on the simplifications adopted indicate that the flow structures that dominate under
unsteady conditions are qualitatively similar to those present in the corresponding steady flow
computation [10, 23, 24]. Moreover, it has been shown that the temporal average of WSS for
unsteady simulations is close to the value of the WSS found for the steady case [19]. It is also
worth noting that peripheral arteries show a less pronounced pulsatility of the blood flow, though
the waveform may be more complex than in other parts of the arterial system. Steady state
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approximations are increasingly representative of the unsteady simulations with low Womersley
number, which is found to be approximately 3 for this patient case.

The equations in the computational domain � are in this case given by:

	u·∇u−divr(u, P) = 0 in �,

divu = 0 in �,
(3)

where 	 is the density of blood. The unknowns are the velocity u and the pressure P , while r(u, P)
is the Cauchy stress tensor, described through a constitutive relation characterizing the rheology
of the fluid. Indeed, system 3 needs to be closed through a constitutive law, relating the Cauchy

Figure 5. Surface mean curvature, as given by Equation (2), for the geometries studied.

Figure 6. Distance map between geometries, measured as the closest distance from surface shown to target
surface. The scale is in % pixels, where negative is inside the domain and positive outside.
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stress tensor with the kinematic quantities, velocity and pressure. Very often in the literature blood
is considered to be Newtonian, for which the constitutive relation is simply

r(u, P)=−PI+2�D(u),

where � is the constant blood viscosity and D is the strain rate tensor, given by

D(u)= 1
2 (∇u+∇uT).

However, whole blood is a concentrated suspension of formed cellular elements, including RBCs,
white blood cells, and platelets, suspended in an aqueous polymer solution, the plasma, which confer
to blood a complex rheological behaviour (see for instance [4, 5] for reviews on rheological models
for blood). It is known that blood exhibits marked non-Newtonian characteristics, particularly at
low shear rates, which are mainly due to the behaviour of RBCs, which appear in high concentration
compared with the other formed elements. One of the non-Newtonian properties displayed by
blood is a shear-thinning viscosity, which means that blood viscosity decreases with increasing
shear rate, defined as


̇=
√

1
2 (∇u+∇uT) : (∇u+∇uT).

This mechanical property is attributed to the aggregation of RBCs in microstructures called
rouleaux, which can themselves aggregate in secondary 3D micro-structures, at very low shear
rates. On the other hand, for high shear rates these aggregates tend to rupture and RBCs elongate
and align with the flow, decreasing the apparent viscosity of blood. It has been argued else-
where that, due to the pulsatile nature of blood flow in large vessels and the time interval of
the cardiac cycle aggregates do not have time to form and blood viscosity is overall constant
and equal to its apparent viscosity at high shear rates (
̇>100s−1), that is found to be around
�=0.0035Pas [36]. However, this is a simplifying assumption that should be taken carefully.
The non-Newtonian behaviour of blood is important when the flow is decelerating and close to
zero, experiencing low shear, that is, less than 100s−1, for the length of time for the 3D aggre-
gates to form. This is significant for 30% of the cardiac cycle [20, 19]. For instance, the shear
rate may range from 0 to 1000s−1 [20, 36] over the cardiac cycle, and regions of the core flow
field where the shear rate is under 100s−1 appear, leading to regions of higher viscosity. This
can be particularly important in pathological situations of clinical interest, such as aneurysms
or stenosis, or in the case of diseases like anemia [4]. Regions of apparent viscosity, related
to the shear rates, are shown in Figure 7, indicating that for the case studied large portions of
the domain are influenced by the non-Newtonian shear-thinning modelling. The region of sepa-
rated flow at the anastomosis ‘toe’ and the centreline of the core flow exhibit markedly higher
viscosities.

Figure 7. For G300
O-Carreau, regions indicated are where the apparent viscosity calculated from the Carreau

model used is greater than: (a) 0.004; (b) 0.0047; and (c) 0.0055 Pa s. Note that regions identified in
(b) correspond to low shear rates with 
̇<100s−1.
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Figure 8. Varying viscosity (Pa s) with the shear rate (s−1) in the Carreau shear-thinning model,
showing asymptotic behaviour (a) and detail (b).

Other non-Newtonian properties of blood, such as viscoelasticity and yield-stress, have also
been reported and studied [6, 4]. However, these properties are less pronounced than the shear-
thinning behaviour and will not be included in the modelling here. Another phenomenon of
blood is its thixotropic behaviour, hence the time-dependent change of viscosity related to the
aggregation or disaggregation of RBCs. The equilibria of the RBC aggregate structures are found
to be reached faster for higher shear rates, and more gradually for the lower ones [4, 5], with
the time scale being greater than the cardiac cycle. However structures, and hence the shear-
thinning non-Newtonian property, may be present despite not being in equilibrium. It should be
noted that the non-Newtonian model used here is not time dependent but related only to the
shear rate.

Here we consider two different constitutive models for the blood flow and compare them. In order
to account for the shear-thinning behaviour of blood we use the Carreau generalized Newtonian
constitutive model, given by

r(u, P)=−PI+2�(
̇)D(u) with �(
̇)=�∞+(�0 −�∞) ·(1+(�
̇)2)(n−1)/2.

where �>0, and n ∈R are constants to be estimated by curve fitting of experimental data (see [4]).
In particular we take �0 =0.056 Pa s, �∞ =0.00345 Pa s, �=3.313 s and n =0.3568 [37].
In Figure 8 the apparent viscosity as a function of the shear rate for the Carreau model with these
parameters is represented.

The coefficients �0 and �∞ are the asymptotic viscosities, with �∞ the viscosity at the highest
shear rate, and �0 the viscosity for the lowest shear rate. Notice that this model describes a shear-
thinning behaviour for n <1.

We also consider a Newtonian fluid with a constant viscosity near to �∞, corresponding to high
shear rates, in particular, with �=0.004 Pa s. This appears to be a good choice for the Newtonian
constant viscosity, as it will be discussed later in Section 7, and it has also been commonly used in
the literature [24]. Other values of �=0.0035 and 0.0046 Pa s are used, the latter being the average
viscosity for G O-Carreau.

The fluid equations 3 should be endowed with boundary conditions. On the physical wall
boundary, the no-slip condition u=0 is used, since a rigid wall model is considered. On the
artificial boundary sections, created due to the domain truncation, a parabolic velocity profile is
imposed with a mean velocity of 0.1ms−1 on the inflow section, corresponding to a Poiseuille
flow. Specifically, the profile is given by u =2ū(1−(r/R)2), where R is the vessel radius, r is the
distance from the cross-section centre, and ū is the mean cross-section velocity. The mean velocity
ū was obtained in vivo using ultrasound. In order to perform this, the inflow boundary is extended
to a circular section. On the outflow sections the boundary is also extended to a circular section,
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so as to reduce the sensitivity of boundary conditions in the anastomosis region, and a flow division
of 40% proximal and 60% distal is imposed. Both inflow and outflow boundary conditions are
obtained from in vivo measurements.

By imposing the same mean velocity for all the cases studied, and since the Kittler and Otsu
derived geometries are of different calibre, the Reynolds number at the bypass graft inflow is
found to be Re=125 and 113, respectively. Since Re is the ratio of inertial to viscous forces,
we expect a difference in the flow field due to this, especially in the identification of core flow
structures and WSS. If considering flow in a straight pipe with calibres the same as the bypass
inflow section, the WSS is found to be 0.66 and 0.73 Pa, for the Kittler and Otsu segmenta-
tions, respectively. The scaling is therefore approximately of 10% and should be kept in mind
when analysing the results, nevertheless it is part of the uncertainty associated with performing
patient-specific studies from data obtained in vivo. It should also be noted that by imposing a
constant mean velocity inflow the mass flow rate is also not preserved for the different geome-
tries. Nonetheless for a constant velocity boundary condition, the WSS scales linearly to the
diameter, however a cubic scaling is given if a constant flow rate is imposed [38]. Hence by
fixing the mean inlet velocity the WSS difference has been minimized between the geometries
studied.

The equations are solved by means of the finite volume method (using Fluent, Fluent Inc.,
Lebanon, U.S.A.), that allows both to define a constant viscosity or a Carreau generalized Newtonian
model, by introducing appropriate parameters. The volume mesh consisted in an unstructured mesh
with approximate 0.13 mm edge length, resulting in approximately 3×106 elements. To ensure
mesh independence, a 7.5×106 element mesh was used to compare the WSS values, obtaining
differences less than 1% on average between meshes of different resolutions. More noticeable
discrepancies in isolated spots were present. These were due to small changes (∼0.1mm) in
the regions defining the separated flow, as well as to the jet orientation (from the graft into the
anastomosis) that is discernible by a shift in the impingement location (which moved by 0.08 mm
approximately).

5. INVARIANTS OF THE VELOCITY GRADIENT TENSOR

It has been seen that in curved pipes, as in the arterial system, the dominant topological features
are vortical structures, which may increase mixing [13] and influence flow stability, however other
forms of coherent structures are present in physiological conduits [39]. Vortices have been widely
studied, however there is no converging approach as to the best way of defining them in 3D.
Amongst the most used are the �2 criterion proposed by Jeong and Hussain [40], the Q criterion
proposed by Hunt et al. [41], the � criterion [42] which are based on the velocity gradient tensor
[40, 43], as well as other measures such as the helicity [44] and the vorticity. In this work we
will observe the flow features using the velocity gradient tensor in describing the flow field due
to the simplicity, elegance and detail of insight that can be obtained. The analysis remains local,
however, such that time-integrated effects and structures should be described by particle tracking
or other means.

Let us consider a flow field free of singular cases such as shocks and vortex sheets. At an
arbitrary point O in the flow field a Taylor series can be used to expand the velocity in terms of
the spatial coordinate around O . This is equivalent to performing a perturbation of the velocity
field with respect to the spatial coordinates.

ui = ẋi = Ai + Ai j x j + Ai jk x j xk + . . . , i, j,k =1, . . . ,3, (4)

where Ai j is the velocity gradient tensor given by:

A= Ai j = (∇u)= �ui

�x j
=ui j , i, j =1, . . . ,3.
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If the coordinate system is assumed to translate without rotation, with the origin following a
passive particle trace, then the origin is a critical point location. In this frame of reference Ai =0,
and if O is on a no-slip boundary, then also Ai j =0. In this work we will consider only the
free-stream flow.

Truncating second- and higher-order terms in Equation (4), a linear system of ordinary differential
equations (ODEs) is obtained, hence ẋ=A ·x, or explicitly

⎛
⎜⎝

ẋ1

ẋ2

ẋ3

⎞
⎟⎠=

⎛
⎜⎝

u11 u12 u13

u21 u22 u23

u31 u32 u33

⎞
⎟⎠
⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ , (5)

whose solution involves either real or imaginary eigenvalues (�i , i =1, . . . ,3):

x1(t) = x1(0)e�1t

x2(t) = x2(0)e�2t

x3(t) = x3(0)e�3t

,

x1(t) = x1(0)e�1t

x2(t) = e�2t [x2(0)cos(�3t)+x3(0)sin(�3t)]

x3(t) = e�2t [x3(0)cos(�3t)−x2(0)sin(�3t)]

(6)

These are the local instantaneous streamlines, hence describing locally the motion of the flow.
In unsteady flow, the expansion in Equation (4) is applied at a moment in time, such that the
solution trajectories correspond to particle paths, which do not generally coincide with streamlines
except at an instant.

For clarity we will order the eigenvalues such that, if they are all real then �1��2��3, while
if the solution comprises of a real and complex conjugate pair then �1 is real and the complex
conjugate pair is given by �2 ±i�3. The eigenvectors indicate the principal directions of motion
of the flow surrounding the critical point, hence they define the planes in which the solution
locally osculates. In the case of three real eigenvalues, the solution trajectories osculate three
distinct planes, while if the solution involves a complex eigenvalue, only one plane exists, given
by the eigenvectors of the complex conjugate eigenvalues. In this case the plane defines the plane
of rotation, while the eigenvector associated to the real eigenvalue indicates the local axis of
swirling. It is important to note that the eigenvectors need not be orthogonal except in the case of
irrotational flow.

For the case of an incompressible flow, the trace of the velocity gradient tensor is tr(A)=
�u1/�x1 +�u2/�x2 +�u3/�x3 =0=�1 +�2 +�3 (or if complex =�1 +2�2). Thus, the sum of the
eigenvectors is zero. Furthermore, the ratio of the eigenvalues, if real will indicate the level of
stretching and compressing of the flow along the eigenvectors, and if complex will provide the
spiralling compactness by �2/�3, since from Equation (6) the time period of one revolution in the
spiralling plane is given by 2�/�3.

By tracking a passive particle path and plotting the associated eigenvectors, one can perceive
the local dynamics surrounding the trajectory. In Figure 9 detail of a passive particle trajectory is
shown in the region of a vortex structure such that there is a real and complex conjugate pair of
eigenvalues. The plane of spiralling and its axis is shown at constant time intervals (0.002 s) along
the trajectory.

Given eigenvalues �1,�2,�3 of the velocity gradient tensor A=∇u, the eigenvalue problem
[A−�i I ]ei =0, i =1, . . . ,n, where ei is the eigenvector associated to �i , can be determined solving
the characteristic equation det[A−�i I ]=0, i =1, . . . ,n. For a 3×3 matrix as is our case, this can
be written as

�3
i + P�2

i + Q�i + R =0, i = . . . ,n,
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Figure 9. (a) Graft and passive particle track and (b), (c) detail of the trajectory in a vortical
structure where the solution is �1,�2 ±i�3. Plane of swirling and axis of stretching are indicated,
given by the eigenvectors of the velocity gradient tensor. It should be noted that for these

details the foci are stable and �1 >0.
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Figure 10. (a) Plot of the Q− R plane at P =0 showing the divisory line between real and
complex solutions to the ODE system 5. (b) Plot of Rs − Qs plane and (c) of −Qs − QW plane
and characteristic features of the fluid. In (a) the node–saddle–saddle configuration is obtained if
the solution is given by three real eigenvalues, whereas a foci configuration if the solution consists

in a real and a complex conjugate pair of eigenvalues.

where P, Q and R are the invariants

P = −(u11 +u22 +u33)=−tr(A),

Q =
∣∣∣∣∣
u11 u12

u21 u22

∣∣∣∣∣+
∣∣∣∣∣
u11 u13

u31 u33

∣∣∣∣∣+
∣∣∣∣∣
u22 u23

u32 u33

∣∣∣∣∣

R =

∣∣∣∣∣∣∣
u11 u12 u13

u21 u22 u23

u31 u32 u33

∣∣∣∣∣∣∣=−det[A]

The surface that divides the real from complex solutions of the eigenvalues can be shown to
be 27R2 +(4P3 −18P Q)R+(4Q3− P2 Q2)=0 [45]. For incompressible flow however P =0 and
the divisory line in the Q− R plane becomes 27

4 R2 + Q3 =0, as shown in Figure 10. In this way
the invariants Q and R can be used directly in describing the flow field.
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Figure 11. Result for G300
O and Newtonian fluid. Passive particle track and iso-contours of

Q=10 000 viewed in-plane (a) and from the anastomosis ‘floor’ (d). Discernible is the jet from
the graft that impinges on the anastomosis ‘floor’, which divides the flow due to the relative
planarity of the vessel bifurcations to form two counter rotating vortices. Cross section (location
shown in (a)) of: (b) magnitude of �1 for complex eigenvalues of the velocity gradient tensor
(regions where the eigenvalues are all real a coloured white); (c) |�3/�2| to indicate the spiralling
compactness (for a foci configuration as indicated for regions shown in (b)); (e) Q (the second

invariant of the velocity gradient tensor); and (f) velocity magnitude (m s−1).

The velocity gradient tensor can be split into a symmetric and antisymmetric part, corresponding
to rate-of-strain and rate-of-rotation tensors, hence ∇u=�ui/�x j = Si j +Wi j , i, j =1, . . . ,3, where
Si j = (�ui/�x j +�u j/�xi )/2 and Wi j = (�ui/�x j −�u j/�xi )/2. Following the analysis above, the
invariants of Si j are QS and RS , whereas the invariant of Wi j is QW , noticing that P , PS , PW and
RW =0 for an incompressible flow. Physical meaning to these invariants is briefly given as follows
[46]: Q = QS + QW is a measure of the rate of rotation over strain rate; QS ∝ rate of viscous
dissipation of kinetic energy, QW ∝ vorticity intensity, positive RS is associated with sheet-like
structures, and negative RS to tube-like structures. Indicative plots are given in Figure 10. These
invariants are widely used in the study of fluid mechanics [46].

Using the above, the flow field can be studied and interpreted accordingly. In Figure 11 the
core flow is studied by taking iso-contours of Q and observing passive particle trajectories with
respect to these. It is evident that two counter rotating vortices are set up along the ‘floor’ of the
anastomosis, as also detailed in [10, 11]. The gross flow characteristics are seen to be a jet forming
from the graft stenosis, which impinges on the anastomosis ‘floor’ setting up two counter rotating
vortices, and forms regions of recirculating flow at the anastomosis ‘toe’ and ‘heel’. A cross section
of the domain is shown with different measures and the in-plane particle paths. The regions of high
values of Q are not coincident with the spiralling flow core, whereas the |�3/�2| show a greater
correlation, demonstrating that there is a higher spiralling compactness around the approximate
vortex core. Furthermore, the value of �1 in the region where the eigenvalues are complex (regions
where the solution is real appear white) tends to agree with the information provided by |�3/�2|,
indicating a bigger stretching in the approximate region of the vortex core which is a region of
low spiralling compactness.
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6. ENTROPIC MEASURE OF MIXING

In this section, we describe how the mixing is computed through an entropic measure with a
new improved resolution. The mixing is calculated by tracing passive particles from the graft
inflow to the proximal and distal outflows and comparing the particle distributions at these
cross sections, thus observing the cumulative effect of the flow structures the particles traverse.
The results, for examples, of the cases studied are shown in Figure 12, where the particles
are divided into distinct species of equal number, based on their distance from the wall at the
inflow cross section. This is done to study the effect of exchange processes between the near-
wall region and the core flow, which are of known importance in physiology. The particles are
uniformly seeded at the inflow section, however, other forms of initial particle profile can be
used based, for example, on the local mass flux or velocity field [47], that may result in more
physiologically representative or more appropriate in studies of particle deposition. For steady
state passive particle tracking, giving equal importance to each particle in the mixing analysis,
the initial distribution only influences the resolution and a densely populated Cartesian grid is
used here.

Mixing is of importance in physiological flows in several aspects, for example, in blood flow
poor mixing is linked to disease formation such as atherosclerosis [13], in nasal airflows mixing
is of importance to permit good humidity and thermal exchange, and also in the lungs mixing and
deposition are of marked interest [48]. Mixing properties are also related to the delivery of drugs,
oxygen and other substances in the body.

Mixing by a flow is the consequence of stirring and diffusion [49–51]. Stirring is the result
of advection and the mechanical stretching and folding of material interfaces can be considered,

Figure 12. Inflow (top row) and outflow (middle row: proximal; bottom row: distal) cross sections,
showing the particle distributions of the two equally numbered species. Location of common outflow

cross sections is indicated in the top-right image.
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whereas diffusion permits mixing across interfaces. Let us consider the non-dimensional advection–
diffusion equation

�t +u·∇�= Pe−1∇2�, (7)

where � is the solute concentration. For large Péclet number, Pe, as is usually the case in blood
flow in arteries, the advective term is dominant and efficient mixing is achieved by increasing
interface lengths and decreasing striation thickness that permit a greater diffusion of different
species to occur. In this work we will look only at the stirring, in specific the cumulative effect of
the flow structures in the anastomosis by means of advection solely.

The measure of mixing is calculated based on the entropy in that it describes the probability of
the location of particles. The Shannon entropy is a measure of lack of information such that the
higher the information dimension, the more random the system is and the less information it can
convey [52]. The method presented here is a development of that presented in [53] for the study of
chaotic micromixers. Similar works include [52] for polymer processing using the Renyi entropy,
whereas other works using the Shannon entropy include [54] for a single screw extruder, [13] for
a helical pipe, [55] for the right coronary artery and [56] for nasal cavities.

In this work two developments are proposed to extend the standard method. First the notion of
cross-section division into cells for ‘box counting’ is replaced by a nearest neighbourhood search
of particles. Second the mixing measure of relative entropy is extended to the case of multiple
inflow/outflow sections. The standard method is first presented and discussed in detail, followed
by description of the developments which resolve some pitfalls and increase the resolution of the
analysis.

In the above-mentioned ‘box counting’ methods, Np particle tracks for Ns different species
of equal quantity are initially computed. Then a cross section is extracted where the measure of
mixing is sought. The cross-sectional area A at this location of interest is divided into small equally
sized Nc cells of area Ac as given by a mesh, such that the total area of the section is A= Nc Ac.
The entropy H is given by

H =−
Nc∑

i=1

(
wi

Ns∑
j=1

(pi, j lnpi, j )

)
(8)

where i is the index for the cells, j is the index for the particle species, Nc is the number of
cells, Ns is the number of species, pi, j is the particle number fraction of the j th species in the
i th cell, and wi is the weight such that wi =0 if the cell is empty or contains only one species
and wi =1 otherwise. Hence, pi, j can be thought of as the joint probability for a particle to be of
species j in cell i , where all particles (irrespective of species) are considered in formulating the
probability. Therefore,

∑Nc
i=1

∑Ns
j=1 pi, j =1. Other ‘box counting’ methods such as those presented

in [49, 57, 58] give a different interpretation to the particle distributions, depending on the details
of the method and measures sought, some of which are compared in [59].

A number of parameters need to be selected. In [52] changes of Ns , Nc and Ns are studied to
see what effect they have on the entropy. The calculated entropy is fairly insensitive to changes
in Nc and Ns , even though Np � Nc � Ns using a ratio of Np = Ns Nc. It is clear that as the area
of the cells increases, i.e. Nc →0, the entropy reaches maximum value. Conversely, if Nc →∞,
then H →0. In the study of efficiency of mixers [52], tests have been performed for O(700),
O(6000) and O(11000) particles to show that similar results are obtained and the measure of
entropy calculated in this way is largely insensitive and convergent for large Np. In [55] mixing
in the right coronary artery Np = O(40000), Nc = O(10000) and Ns =2 are used with confidence
that there are sufficiently large numbers of particles and cells to avoid considerations of errors due
to this discrete method. However, Cookson et al. [13] indicate the need for Np = O(60000) and
Nc = O(10000). From a statistical standing, for a perfectly randomized population of particles,
the Poisson distribution describes the probability, relating the number of cells to the expected
number of particles to lie therein [49], leading to an informed approach of choosing cell number.
In practice, the ratio of particle number and cell size reflects the desired mixing scale (or grain),
related to the average striation thickness, to be studied.
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Moreover, the cell size to cross-sectional area ratio (Ac/A) is important since the smaller the
cells, the higher the resolution of the analysis performed. The area ratio, and hence the number
of cells, is kept constant for all cross-sections to ensure that the relative probability of a particle
being in a cell is unchanged. Furthermore, the aspect ratio of the cells should be kept as small as
possible to ensure that particles within a cell are not in fact far apart.

Finally, the absolute value of H is difficult to relate directly and is therefore normalized to the
maximum possible mixing. Let us define H0 as the mixing entropy at the location the particles are
initially released. Then, H0 is an initial state and should correspond to the minimum entropy. We also
define Hmax as the maximum possible mixing entropy, given by Hmax = ln(Ns Nc)= ln(Ns A/Ac).
This can be obtained by choosing pi, j =1/(Nc Ns) for all particles and cells, hence the absence of
any information about the system, i.e. complete disorder. Therefore H0�H�Hmax. The degree of
mixing � is defined [53] as:

�= H − H0

Hmax − H0
(9)

The value �=1 corresponds to a uniform particle distribution. It would be expected that as further
downstream one goes, the greater the � becomes, until it will tend to level off. The above discussion
details the standard method.

The approach is based on cells to calculate the entropy and it requires care to ensure that the result
is independent of the cell number and shape. To overcome this one tends to use a large amount of
particles and cells where Np�Ns Nc, hence errors associated with the method will reduce to being
insignificant, though it will require large amounts of computation. Furthermore, the limitation to
binning particles into cells removes the information that may be present in neighbouring cells.
For example, two particles at very small distance from each other may lie in two different cells and
the relationship to each other lost. Division of the cross-section into cells is also sensitive to their
aspect ratio and cell area, which may locally vary if the cross-section is of complex shape. To avoid
the dependency on cells we propose a new binning method based on the radius of influence r from
the particles. Equation (8) now becomes

H =−
Np∑
i=1

(
wi

ni

Ns∑
j=1

pi, j lnpi, j

)

where ni is the number of particles within support radius r from the interrogation particle. Division
by ni is required to give this particle an equal weighting since it lies within the radius of other ni
particles and will therefore be considered a total of ni times. When a particle is close to the wall,
part of the region of influence lies outside the domain. To correct this bias so that all particles have
the same effective influence, r is increased accordingly to ensure that a constant area is covered
within the fluid cross section.

Given that the area of the bins is given by Ab =�r2, then the value of the maximum entropy
now becomes Hmax = ln(Ns A/Ab), where the ratio of A/Ab should be maintained for all cross
sections. Now if we consider the case of the bypass geometry where the mass outflow split is 40%
proximal and 60% distal, then this split should also be maintained with respect to bin size:

Aproximal

Ab proximal
=0.4

Agraft

Ab graft
, and

Adistal

Ab distal
=0.6

Agraft

Ab graft
,

where Agraft, Aproximal and Adistal are the cross-sectional areas of the graft, proximal and distal
vessels, respectively, whereas Ab graft, Ab proximal and Ab distal are the bin areas for the graft,
proximal and distal vessels, respectively. The entropy at the outflow sections is therefore summed
to give H = Hproximal+ Hdistal in Equation (9), and results are presented in Table II.

Similarly as for the scheme based on cells, the method performs well if the number of particles
and radius of the bins are given by Np�Ns A/Ab. By removing the meshing of the cross-sectional
area and defining the neighbourhood based on the support radius instead, the accuracy of the
mixing for a reduced number of particles is increased.
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Table II. Relative mixing at the distal and proximal vessels, with respect to the bypass graft inflow, for
cross sections shown in Figure 1. Indicative particle track cross sections are shown in Figure 12.

Rheological model G K G300
K G20000

K G O G300
O G20000

O

Newtonian 0.34 0.35 0.26 0.27 0.26 0.25
Non-Newtonian 0.33 0.34 0.25 0.26 0.25 0.24

As noted in [53, 55], particles that get close to the wall are ‘lost’ or ‘stuck’ due to the low
velocities present in these regions, hence never feasibly making it to the cross-section location of
interest, as also seen in Figure 12. The majority of the particles are lost in the initial stages of
the tracking due to the release of these particles close to the wall. Therefore, the particles that get
stuck at the start are omitted from the calculations. In this work, in the most extreme cases found,
the number of particles that fail to pass through the domain in a feasible time (10 s) is O(2000)
particles for an initial seeding of O(40000) particles, hence a 5% error.

Given that the tracer particles are studied as passive and the flow is steady, it is important to
note that the entropy calculated is related to the length of interface that divides the species, as
indicated in [57]. Furthermore, it should be noted that while the number of particles Np and area
of bins Ab are sought to be independent of the method, so as to achieve a convergence of the
relative entropy, comparison with different cases and geometries is only valid if the number of
particles, their initial configuration and support radius are maintained.

A word of warning as regards to the level of detail is in order when inferring the relation
between the entropy measured and the length of interface between species, since it depends greatly
on the resolution studied. In [59] noticeable error is reported despite the large number of particles
used (O(10000)), since the measure of relative entropy obtained describes the striation thickness
and stretching only to the resolution of the number of particles and cells used. Therefore, if fine
detail is expected then the number of particles should increase and their support radius decreases.
The result is that the choice of the number of cells and particles should be evaluated depending
on each case studied individually, bearing in mind the expected size of detail or parameters
such as the Péclet number. In this work, the number of particles is Np = O(40000), the number
of species Ns =2, the expected particle density (for uniform particle distribution) 	=10, and
the area ratio A/Ab =4000, making the radius of influence at the graft inflow cross section
r ≈0.035 mm.

7. RESULTS COMPARING THE DIFFERENT CASES

In this section, the results are presented comparing effects of uncertainty with respect to the
resulting flow solution. Uncertainty considered includes using two different segmentation methods
(Otsu and Kittler), three different levels of smoothing (none, 300 and 20 000 iteration steps), and
two different fluid models (Newtonian and Carreau generalized Newtonian). Specific examples
that describe well the trends observed are discussed in greater depth.

Comparing both quantitatively as well as qualitatively, the flow field is intricate. An approach
is to observe the vortical structures. This is done here by identifying iso-contours of high Q
(second invariant of the velocity gradient tensor), shown in Figure 13. In this figure the pair of
counter-rotating vortices along the ‘floor’ of the anastomosis are evident, as are other structures
which on closer observation are regions where the flow is locally curving but not part of vortical
structures.

It is apparent that as the geometry becomes smoother due to the more intense surface smoothing,
the vortical structures become less pronounced. There is a little difference between the Newtonian,
non-Newtonian and moderate surface smoothing, as seen when comparing G O and G300

O-Carreau.
Differences in the vortical structures are more pronounced when comparing results obtained
using different segmentation methods. These results are made clearer by observing the cross

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:926–953
DOI: 10.1002/cnm



TOPOLOGICAL FLOW STRUCTURES AND STIR MIXING 947

Figure 13. Q =10000 iso-surfaces and cross sections showing Q (top), the velocity magnitude
(m s−1) (bottom) and in-plane particle trajectories, for a selection of the cases studied. Top left

insert shows the cross section location.

section of Q as well as the velocity magnitude, also shown in Figure 13. These sections are
approximately at the same height as the region of impingement of the flow on the anastomosis
‘floor’, and also cut into the reversed flow region at the ‘toe’ of the anastomosis. The in-plane
particle trajectories indicate a greater influence of a vortical structure in the case of the Kittler
segmentation, with larger regions of faster moving fluid showing the wrapping around of
the flow. These indicate that the increased vessel patency facilitates the formation of vortical
structures.

In Figure 14 the WSS magnitude and the surface shear lines (SSL) are presented. The latter
are obtained by integrating the WSS components along the surface and indicate the near-wall flow
direction. Observing the complex patterns of the WSS and the SSL, the region of flow impingement
is visible on the anastomosis ‘floor’ and separated flow regions at the anastomosis ‘toe’ and ‘heel’
are also discernible. From the SSL, one can also notice the effects of the vortical structures.
The influence of the surface smoothing is evident as a reduction of the complex patterns of WSS.
The effect of use of different segmentations is apparently not so pronounced, and the SSL patterns
are comparable between the cases despite the apparent difference in the core flow field. However,
the stagnation point is seen to shift and the values of WSS magnitude locally also vary noticeably.

The effect of the rheological model is again seen to have a lesser impact on the flow
than uncertainties in the virtual model surface definition. The difference, shown in Figure 14
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Figure 14. Wall shear stress (Pa) and surface shear lines (as the integrated path of the wall shear stress
components). The wall shear stress difference in the non-Newtonian and Newtonian computations result
in little change as shown by G300

O-Carreau −G300
O . A cross section of the apparent viscosity (Pa s) obtained

from a non-Newtonian simulation is shown.

(G300
O-Carreau −G300

O ), indicates that the WSS difference is of the order of 0.1 Pa. This aspect is
important when observing regions of low WSS that is widely accepted to be associated with
disease in arteries, as at the anastomosis ‘toe’, where the Newtonian model yielding a good
approximation but underestimates WSS.

While the Carreau non-Newtonian model used is obtained from experimental in vitro data, the
value for the Newtonian model should be an approximation to this for the case studied. In this work
a value of �=0.004Pas was used in all the simulations. A further set of Newtonian simulations
were performed to study the sensitivity of this choice and values of �=0.0035 and 0.0046Pas
were used, the latter being the average viscosity over the domain for the G O-Carreau simulation,
while the prior is commonly used in the study of the arterial system [60, 61]. It should be noted
that the lowest viscosity seen from the G O-Carreau simulation was approximately �=0.0036Pas.
The WSS and SSL patterns are very similar, however on average choosing �=0.004Pas gives
closer results to the Carreau model used. The difference in WSS between the use of �=0.004 and
�=0.0035 or �=0.0046Pas is on average 0.13 and 0.15 Pa, respectively. The greatest differences
between these Newtonian models are seen at the stenosed regions of the graft and proximal artery
(at the junction with the anastomosis) and the location of the stagnation point on the anastomosis
‘floor’ (which shifts by approximately 0.15 mm). In these regions only, the differences in WSS
are on average 0.38 and 0.41 Pa between the use of �=0.004 and �=0.0035 or �=0.0046 Pa s,
respectively.
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Figure 15. Cumulative area distribution for the wall shear stress for ranges 0−0.5, 0.5−1.0, 1.0−1.5,
1.5−2.0, 2.0−3.0, 3.0−4.0, 4.0−5.0 and 5.0+. Representative uncertainty is shown, due to difference
in: thresholding, surface smoothing and rheological model. Greatest discrepancies in regimes of low wall

shear stress are due to image segmentation uncertainty.

By observing the values of mixing, as an integrated effect of the flow field, the values are
approximately constant as shown in Table II, however there are some noticeable differences in the
particle track cross sections presented in Figure 12. The largest common difference is obtained
by the use of a different segmentation method, where the values range from �=0.35 to 0.25.
The increase in smoothing tends to reduce the mixing possibly by the reduced strength of the
vortical structures to give rise to a less striated configuration. We observe that if a different initial
configuration of particle species at the graft inflow is given in order to observe different phenomena,
instead of concentric as presented here, the relative mixing of the species may be different. From
the particle path cross sections presented in Figure 12, most of the faster moving flow at the inlet
will exit through the distal vessel, and conversely a greater portion of the slower moving flow will
exit the proximal vessel.

To quantify the uncertainty, or error, associated with performing numerical studies based on
patient-specific in vivo measurements with relation to the WSS, a probability density function can
be formulated and presented as a percentage area associated with ranges of WSS. The results for
the sample cases is shown in Figure 15. As mentioned above, and seen in this plot, the effect of the
non-Newtonian model is to reduce peaks in very high or low WSS. Most of the error bounds in
the WSS probability density function are within 5% surface area, or proportionally ∼40% surface
area. The largest errors in the region of low WSS are primarily seen due to the segmentation.
Nevertheless, the remaining factors of uncertainty studied here also give large discrepancies in
other ranges of WSS. The factor of scaling, due to the difference in the Reynolds number between
the Kittler and Otsu families of virtual models, was given to be in the order of 10% and the results
presented indicate a larger disagreement.

The effect of the change in geometry definition and the rheological models used can also be
measured in terms of the pressure drop across the domain. While not a sensitive measure locally, the
overall change can give an appreciation of the study parameters. It has been found that a pressure
drop from graft inflow to distal outflow was of the order of 100 Pa for the Otsu segmentations and
75 Pa for the Kittler segmentations, and from the graft inflow to the proximal outflow the pressure
drops were approximately 75 and 55 Pa, respectively, which is a greater difference than given by
considering the hydraulic diameter. The effect of smoothing is to decrease these magnitudes by
around 3 and 10 Pa from the original to the smoothed cases, using 300 and 20 000 iteration steps,
respectively. The effect of non-Newtonian modelling is not emphatic, with increased pressure drops
in the order of 1 Pa with respect to the Newtonian case using �=0.004Pas.
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8. CONCLUSION

This work presents a patient-specific study of uncertainty in the computed steady state flow solution
for a peripheral bypass graft, with respect to geometry definition and constitutive model of blood.
The topological uncertainty is introduced as different methods of automatic segmentation of the
medical images and varying intensities of surface smoothing of the reconstructed virtual models.
Newtonian or generalized Newtonian Carreau models are used to observe the uncertainty associated
with describing the rheological behaviour of blood. The methods presented are automatic for the
greatest part, relying only on minimal user intervention and permitting for a relatively fast turn
around time and user independence.

Methods to derive quantitative and qualitative comparisons in the flow field are presented and
related to clinical relevance; in specific the WSS, velocity gradient tensor and mixing are used as
key measures. Novel enhancements in the method of calculating the mixing permit an increased
resolution in the analysis and the possibility of coping with split cross sections. Description of the
segmentation, reconstruction and smoothing methods is also discussed, including the analysis of
the variability in the virtual model definition that arises.

Uncertainty in the virtual model definition due to the different segmentation methods was
on average under 1 pixel, but locally as large as 4 pixels. The surface smoothing was found
to yield a faithful representation to the medical image data if moderate (using 300 iterations),
retaining the local features while removing reconstruction artefacts. More pronounced smoothing
(using 20 000 iterations) yielded geometries with reduced detail that could be considered as
idealizations, which while not entirely matching the medical image data captured many details.
Both different segmentations and levels of smoothing preserved the bifurcation angles of the
vessels, using the discrete method following [1]; furthermore, the volume and surface area
are not preserved nor their ratio maintained in the case where the segmentation method is
different.

Uncertainty bounds associated with WSS, as presented in Figure 15 as a probability density
function, indicate errors of 5%, and proportional errors in the order of 40%. Differences in the
mixing are also in the order of 50%. It is found that on the whole the largest discrepancies in
the flow field are given by the use of different medical image segmentation methods and surface
smoothing, affecting especially the percentage of anastomosis subjected to low values of WSS
and the levels of mixing with clear health-care implications. Vortical structures are seen to be less
strong for smoothed geometries and with the Otsu segmentation (which has a reduced patency
with respect to the Kittler segmentation), resulting also in reduce mixing values.

For the case studied, the mixing, vortical structures and pressure drop are not as greatly influenced
by the rheological model used compared with the variability in the segmentation or smoothing
intensity. Furthermore, the WSS patterns and magnitudes for the case studied also indicate that
a Newtonian model can yield a good approximation to the Carreau model, if the viscosity value
is carefully chosen. However, it is important to emphasize that the use of non-Newtonian models
in medical applications is prevalent where WSS is commonly correlated to health care, since the
Newtonian assumption underestimates the low WSS regions, as shown in Figures 14 and 15. While
non-Newtonian modelling is known to be important especially in the cases with a range of low
shear rates, which are present for the geometry configuration and flow rates used in this study, these
effects are secondary to the geometrical uncertainty. In order to quantifying the general relative
importance of the geometric and modelling uncertainties, further studies that encapsulate a wider
range of geometries are necessary.

In fact, this work develops a number of aspects to incorporate uncertainty, however the analysis
presented is by no means complete, while still identifying problematic aspects in the numerical
modelling of in vivo patient-specific data. To achieve a more accurate range of the errors, a further
array of segmentation methods could be analysed. Also, different non-Newtonian models should be
studied and compared. While alternative generalized Newtonian models are expected to behave in
a similar way to the Carreau model, other non-Newtonian properties such as yield stress, thixotropy
and viscoelasticity should be studied regarding the uncertainty in the choice of the fluid model for
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blood. Furthermore, the analysis should be extended to unsteady simulations and the effect of the
boundary conditions, performing these in a combinatorial manner.
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